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So, what d'ya expect? Pursuing Reasonable Individual
Student Growth Targets to Improve Accountability Systems

Carl Hauser
Northwest Evaluation Association

April 2003

One unfortunate characteristic of most highly visible educational accountability systems is their close

tie to a single or very few consequential levels of academic achievement. For example, the Adequate

Yearly Progress provision of the No Child Left Behind Act of 2001 focuses exclusively on a

"proficiency" level of achievement. Since attainment of "proficiency" is the sole level for which

credit is granted in this system, the concern is that students making good progress but not enough to be

considered "proficient" receive no credit toward an index of being "accountable". Over time, students

who are considered too far from the "proficiency" level to be able to attain it by assessment time, run

the risk of losing instructional attention in favor of more "proficient probable" students. Similarly,

students who are obviously beyond the key "proficiency" level can also lose instructional attention.

Any positive change in their status will not affect the accountability index.

Various authors have addressed this dilemma. For example, Linn, Baker, and Betebenner (2002)

proposed a system that assigns fractional credit to performance categories other than "proficient".

Flicek and Lowham (2001) proposed using individual student growth referenced to longitudinal

growth norms as a method of incorporating and giving credit for progress made, even though the end

performance status might fall short of a performance criterion. Kingsbury (2000) proposed a "hybrid

success model" for setting individual student growth expectations for students based on their

proximity to an achievement target, thus allowing both status and growth to demonstrate

accountability. What distinguishes the Flicek and Lowham and the Kingsbury proposals is the central

role each assigns to individual student growth within an accountability scheme. Both consider

individual growth as an integral part to accountability, not merely as an optional supplement (or

worse, an interesting side note) to performance status.

This paper is predicated on a rather simple argument: in order for academic growth to serve in a

fundamental role in an accountability system, the amount of growth a student would reasonably be

expected to attain over some set time interval (i.e., a growth expectation, standard, or target) must be
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able to be declared in advance. These declarations, or others based on them, will typically be

translated into a form of value within an accountability scheme. This value, in turn, will be at least

part of the evidence for judging the extent to which the school (or district or state) is being successful

or 'accountable'. For example, a district expectation might be that all 4th grade students grow by X

amount. While this expectation is certainly convenient, its reasonableness is open to question. Is it

reasonable to assume that all students in a single grade would grow at the same rate? For a high

achieving student, requiring average grade level growth will likely be more demanding than requiring

average grade level growth from a lower achieving student. A lower achieving student might even be

thought of as "under-challenged". Neither student would be treated equitably.

A 'reasonable' growth target can be thought of as the proximity between the observed growth and the

expected growth; the closer the observed growth is to expected growth, the more reasonable the

growth target. This position implies that observed growth that is substantially greater than the target is

no more or less reasonable than observed growth that is substantially less than the target. With a focus

on individual student growth, it should be possible to create a method of defining reasonable, equitable

growth targets for each student using characteristics of the individual student's past performance.

There is already strong evidence, for example, that the rate of growth is often associated with initial

student achievement status (e.g., NWEA, 2002; Seltzer, Choi, & Thum, 2002a, 2002b).

The purpose of this study was to evaluate several feasible models for determining single-year

academic growth targets for individual students. These models are detailed in the next section.

Single-year growth targets were considered as the most likely points from which declarations of the

value of observed growth would be defined for use in an accountability system (e.g., "value added"

systems). This study was undertaken as an initial, empirical exploration of some of the territory

involved in this area. The study is certainly not definitive, though it holds implications for questions

such as: 'How much academic growth can we reasonably expect a student to make over the course of a

year?'; 'Is it reasonable to ask all students in the same grade to grow at the same rate?'; 'Can the

observed growth of large numbers of students who were in the same grade level and in the same

achievement range, help to define reasonable growth?'. The study does not address how growth data,

per se, should be used in an accountability system, only on how an equitable baseline of growth could

be established.



Methods

Data sources.
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Data for the study came from three cohorts of student test records. Two of the cohorts (A and B) were

from a single moderate sized school district in Wyoming. The district has 28 elementary and four

middle schools and a total student population of slightly over 12,000. For these cohorts there were

four waves each of spring achievement data in reading and mathematics (spring 1999 through spring

2002). The third cohort (C) came from the Northwest Evaluation Association 2002 RIT Scale Norms

Study. The test records making up this cohort are from students in nine districts in six states. In this

set there were 10 waves of fall and spring achievement data in reading and mathematics (fall 1996

through spring 2001). For Cohorts A and B, the last wave contained the scores to be predicted. In

Cohort C, the last wave also contained the scores to be predicted. But in Cohort C, the ninth wave

(fall 2000) was not considered as observed. In all cohort datasets, only those student records

containing complete test data for a subject area were included in the analyses for that area. Thus, for

example, a particular student's complete reading test data would be included even though their

mathematics test data were incomplete (and not included). These cohort characteristics are

summarized in Table I.

Table 1. Characteristics of the cohort data sets

"Observed" waves used Predicted
Districts Total for prediction term,year /

Cohort represented waves term,year a grade Reading Math

A 1 4 S99, SOO, S01 SO2 / 5 655 659

B 1 4 S99, SOO, S01 SO2 / 6 738 742

C 9 10 F96, F97, F98, F99,
S97, S98, S99, S00

S01 / 8 3876 4132

a F = fall; S = spring
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Table 2 presents achievement data for the three cohorts. Achievement levels between the cohorts were

comparable in common grades for the spring terms. Variance in common grades in Reading tended to

be slightly higher in Cohorts A and B than for Cohort C. The reverse was true in Mathematics. In

Mathematics for Cohort C, a trend of increasing variance from the first wave to the last was observed.

Table 2. Descriptive statistics of cohort performance in reading and mathematics by season and year.

Season-
Year Grd

Cohort A

Reading Matematics

Med. Mean SD Min. Max. N Med. Mean SD Min. Max. N

S-99 2 192 188.7 14.72 148 226 655 190 189.0 12.54 144 226 659

S-00 3 202 199.0 13.81 152 234 655 203 201.6 12.42 148 239 659

S-01 4 210 207.3 14.03 144 239 655 213 212.2 11.07 159 250 659

S-02* 5 215 213.9 12.78 164 252 655 222 221.9 12.15 174 264 659

Cohort B

S-99 3 201 198.5 13.83 148 232 738 202 200.5 11.57 161 229 742

S-00 4 209 206.4 12.77 152 237 738 211 210.9 11.58 168 255 742

S-01 5 215 213.7 12.95 154 247 738 220 220.2 12.45 177 254 742

S-02* 6 220 219.1 12.40 155 247 738 228 226.8 12.73 180 262 742

Cohort C

F-96 4 204 201.7 13.49 143 233 3876 201 200.4 11.30 149 247 4132

S-97 4 210 208.3 13.20 143 243 3876 210 209.4 12.13 154 255 4132

F-97 5 211 209.1 12.96 147 241 3876 210 209.5 12.42 155 252 4132

S-98 5 216 214.6 12.67 154 251 3876 218 218.0 12.97 150 263 4132

F-98 6 217 215.5 12.12 155 250 3876 218 217.2 13.10 172 261 4132

S-99 6 222 220.1 11.97 156 258 3876 225 225.5 14.88 172 278 4132

F-99 7 222 220.1 11.68 156 256 3876 226 226.2 15.25 160 282 4132

S-00 7 225 223.5 12.37 166 261 3876 234 233.9 16.35 171 293 4132

F-00 8 225 224.3 11.95 160 268 3876 235 234.5 16.56 164 290 4132

S-01* 8 230 229.1 11.60 165 269 3876 242 242.1 17.10 184 294 4132

Designates the season-year for which scores were predicted.
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Tests characteristics. All tests used in this study were created from the NWEA item banks in Reading

and Mathematics. These banks are comprised of several thousand test items that have been calibrated

for difficulty using the one-parameter Item Response Theory (IRT) model (Rasch model). Item

difficulty and student ability are both expressed in Rasch Units (RITs) on the same scale. A RIT is

simply the linear transformation of the logit theta metric that sets the unit at .10 logits and centers the

scale at 200 (i.e., RIT = 0*10 + 200). Thus, a RIT of 210 is equivalent to logit = I. There is one

scale for Reading and one scale for Mathematics. Paper and pencil Achievement Level Tests in

Reading can measure dependably from about MT 149, ±3.6 (percentile 2 in fall grade 2) to about RIT

252, ±5.1 (percentile 98 in spring grade 10). In Mathematics, paper and pencil tests measure

accurately from about RIT 156, ±3.8 (percentile 2, fall grade 2) to about RIT 276, ±5.5 (> percentile

98 in spring grade 10). Well-targeted level tests typically have measurement error in the 2.8 3.3

range. Computerized-adaptive versions extend slightly the measurement ranges with these levels of

associated measurement error. A complete description of the technical characteristics of NWEA tests

can be found in the NWEA Technical Manual for Achievement Level Tests and Measures of Academic

Progress (2003).

NWEA RIT Scale Norms. Several of the models used to determine individual student growth targets

used data reported in the NWEA 2002 norms study. This study includes the test records of

approximately 1.05 million students representing 321 school districts in 24 states. The districts ranged

from very urban to very rural. They ranged in size from under 200 to over 60,000 students.

The norms study provided several specific data elements. Grade level means and standard deviations

of student status and growth in the grades of interest were used. For status level data, these were

based on roughly 71,000 to 89,000 students per grade level. Grade level growth means were based on

intact groups of students; that is, student growth was based on the same students having both scores

used to calculate a change (growth) score. Spring-to-spring grade level growth means were based on

roughly 44,000 to 54,000 students per grade level. Growth means were also retrieved that were

disaggregated by the starting status level of students. These means were calculated for all students

whose achievement status at the beginning of the comparison period fell into each 10 point RIT block.

MT blocks were set at 140-149, 150-159, 160-169, . . . . ,=== 260-269. The numbers of students used

to compute the means in these RIT block cells ranged from 258 to over 14,000. Average N's for all

MT block cells were 4427 for Reading and 4495 for Mathematics. Spring-to-spring growth

distributions are summarized in Tables 3a, 3b for Reading and in Tales 4a, and 4b for Mathematics.
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Models for determining individual student growth targets.

All the models investigated yielded a prediction of each student's final term RIT score in the subject

area being considered. For Cohorts A and B, this was spring 2002, for Cohort C it was spring 2001.

Individual student prediction residuals (observed score predicted score) were used as the basis for

comparing the models. The models differed in the way the available data (prior to the final term) were

treated and combined with a growth estimate to arrive at a prediction. Models based on mean z-score

status were the only models not to include an explicit estimate of growth. Some models used growth

norm references from the 2002 NWEA norming study. One model used no prior achievement data but

only the mean observed growth of same grade-level students from the norms study. A second model

used only the observed RIT score from the spring prior to the final (predicted) term and the mean

observed growth of students who achieved a similar RIT score at the same grade level from the norms

study. All other models used all prior RIT scores from a student's record to arrive at a growth

estimate for the student. Some used the scores directly while others relied on modeling these scores to

"true" score estimates using linear modeling (LM). Stated more formally, the models are as follows:

Mean grade level growth (MGLG):

"i7g4.1 = RITg, +

Where RITg, is the observed RIT score for student i in grade g, the final observed grade; µg is
the mean growth of students in the norms study going from grade g to g +1.

Mean RIT block growth (MRBG):

Yg +I = RITgi + PaB.g

Where RITg, is the observed RIT score for student i in grade g, the final observed grade; IARB
is the mean RIT block growth of students in the norms study going from g to g+1 whose
achievement in the final observed grade, g was in RIT block, RB.

Linear Model (LM) least squares slope estimate (LM1sS1p):

'irg+1 = RITgi + nit Ls

Where RITg, is the observed RIT score for student i in grade g, the final observed grade;
is the LM least squares estimate of growth rate for student i over the entire data collection
period.

In the LMLSsIp model and all the models below that include a linear model (LM) component, the

linear model component developed was equivalent to the level 1 model of a hierarchical linear model

10
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(HLM). The level 1 model was structured as it might be posed in a study of academic achievement

growth in a school system; that is, without predictor variables and using grade level as the time

variable. In contrast to a growth study, however, the time variable, grade, was 're-centered' on the last

observed grade so that it took on a value of 0 while prior grades took on negative values. For example

in Cohort A, grades 2, 3, and 4 became grades -2, -1, and 0 respectively used to predict grade 5 which

took on the value of +1. When fall scores were included in the analyses (Cohort C), the decimals .1

and .8 were used to distinguish between fall and spring, respectively. Centering on the final

`observed' grade (7.8) resulted in the grades 4.1, 4.8, 5.1, 5.8, 6.1, 6.8, 7.1, and 7.8 being converted to

-3.7, -3.0, -2.7, -2.0, -1.7, -1.0, -.7, and 0, respectively. All models that included linear components

were estimated using HLM5 (Raudenbush, Bryk, Cheong & Congdon, 2001).

It should also be noted that the Cohort C data were analyzed using a linear and a non-linear (quadratic)

model in order to evaluate best model fit. These analyses supported the use of a linear model over a

non-linear model for both Reading and Mathematics using spring only and fall and spring data.

Linear Model (LM) empirical Bayes slope estimate (LMeBS1p):

.c7g+1 = RITgi + EB

Where RITg, is the observed RIT score for student i in grade g, the final observed grade; n iS-11EB --
the LM empirical Bayes estimate of growth rate for student i over the data collection period.

Linear Model (LM) least squares status estimate with RIT block growth (LMIsSt+MRBG):

17g+1 = 7tOi.LSg 1-1RB.g

Where noilsg is the LM least squares estimate of the status for student i, in grade g, the final
observed grade; IARB.8 is the mean growth of students in the norms study going from grade g to
g+1 whose achievement in grade, g, was in RIT block, RB.

Linear Model (LM) empirical Bayes status estimate with RIT block growth
(LMeBSt+MRBG):

= Thoi.EB 1-11213 g

Where no,.EB is the LM empirical Bayes estimate of the status for student i in grade g, the final
observed grade, g; 1ARB g is the mean growth of students in the norms study going from grade g
to g+1 whose achievement in grade, g, was in RIT block, RB.

Full Linear Model (LM) least squares status and growth rate estimates (FLMIs):

(g+1 = + eti

Where no, Ls is the LM least squares estimate of the status for student i when the grade metric, g
= 0; TCH Ls is the LM least squares estimates of the growth rate for student i over the data

1
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collection period; et, is error. The final observed grade, g, was set to g = 0, and all prior grades
were reset according to g-1 = -1, g-2 = -2, and so on.

Full Linear Model (LM) empirical Bayes status and growth rate estimates (FLMeB):

Yg +l = nOi.EB TC 1 i.EBgti eti

Where no, EB is the LM empirical Bayes estimate of the status for student i when the grade metric,
g = 0; nii.EB is the LM least squares estimates of the growth rate for student i over the data
collection period; et, is error. The final observed grade, g, was set to g = 0, and all prior grades
were reset according to g-1 = -1, g-2 = -2, and so on.

Mean of norms-based z scores (MnbZ):

[lTg+ 1 = Zg+ 1 = Zg'n + Zg-3 + 42 + zg_, + zg 1 *
n

a g+ 1 + 1-1g+ 1

Where z for the predicted grade, g +1, is the mean of norm-based z's from all prior tests using the
respective means and standard deviations, as found in the norms study, from the earliest grade,
g-n, to the final observed grade, g, and ag+, and lig+, are the standard deviation and the mean,
respectively of the grade g +1 from the norms study.

Mean of norms-based z scores with last observed score double weighted (MnbZ*):

Zg.n . . . Zg.3 Zg_2 Zg_i 2Zg
= Zg+i n + 1 ag+ I + I-1g+ I

Where z for the predicted grade, g+1, is the mean of norm-based z's from all prior tests using the
respective means and standard deviations, as found in the norms study, from the earliest grade,
g-n, to the final observed grade, g which is double-weighted, and ag+, and jig+, are the standard
deviation and the mean, respectively of the grade g +1 from the norms study.

Mean of locally based z scores (MIbZ):

. . Zg_3 Zg-2 Z + Zsi
Zg-1-1 s +1n * d + X g+ I

Where z for the predicted grade, g +1, is the mean of locally based z's from all prior tests using the
means and standard deviations calculated from scores in the earliest grade, g-n, to the final

observed grade, g, and sdg+, and X g+1 are the local historical standard deviation and the mean,
respectively of grade g+ 1 .

12
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Mean of locally based z scores with last observed score double weighted (MIbZ *):

+1
[ Zg_ . . . + Zg.3 + Z8.2

+
+ Z

g -1

+ 2Z
g * Sdn I
l g-F1 + X g+ 1

Where z for the predicted grade, g+ 1 , is the mean of locally based z's from all prior tests using the
means and standard deviations calculated from scores in the earliest grade, g-n, to the final

observed grade, g, which is double-weighted, and sdg+, and X g." are the local historical
standard deviation and the mean, respectively of grade g+ I .

All models except for the last two were applied to the cases in all three cohorts. All data from each

set were used, with the last score used in prediction (referred to above as the last observed grade, g)

being the score from the spring one year prior to the spring score being predicted (i.e., grade g +1).

This means that for Cohort C, where the RIT being predicted was for grade 8, the fall grade 8 RIT was

not used in any of the prediction models. The last two models, locally-based z scores, could only be

applied to the Cohort A data for two reasons: a) data for Cohort C were collected across districts, thus

common local means and standard deviations were not available, and b) no historical local data were

available to supply the means and standard deviations for the predicted grade for Cohort B, grade 6.

Analysis.

Residuals at the individual student level (Yg.4.1 171g+i) yielded from each of the models were the focus

of analysis. For each set of predictions from each cohort, several statistics were computed to help

describe the resulting distribution of residuals. These included the mean residual, the root mean

square error, and the percent of the cases for each model that yielded the minimum residual across all

models. To assess how well each model's uniformity in prediction across the measurement range,

Pearson product-moment correlations were calculated between the residuals and the last observed RIT

score. Positive correlations indicate that higher scores will tend to be under-predicted and lower

scores will tend to be over-predicted. Negative correlations indicate the opposite tendencies. The

extent of these deviations depends on the magnitude of the correlation. In addition, the percent of

cases for each model that yielded a predicted score within a reasonable standard error band of the

observed score was calculated. 'Reasonable', here, was considered to be ±3.3 for Reading and ±3.2

for Mathematics. These values were based on examinations of the error levels observed for well

targeted tests raw score 45-65 percent correct. Comparisons between methods were also maintained

at the descriptive level. More specifically, plots of residuals by the final (observed) score were

13



developed to form a more complete understanding of the nature of prediction results of the various

models.

Results

Cohorts A and B.

12

Table 5 contains the results of the five basic descriptive statistics for Cohorts A and B for both

Reading and Mathematics. The asterisks in Table 5 designate the most favorable value for the

particular descriptive statistic across all models. Similarly, the superscript italic 2's designate the next

most favorable value for the statistic. For example, in the Cohort A Reading results, the MlbZ*

model was found to have the most favorable mean residual (minimum absolute) value (.18), while the

MRBG model was the next most favorable (-.I 8).

When examining Table 5 within each content area, several commonalities appear. Initially we see that

the linear models that included the slope parameter (LMIsSlp, LMeBSIp, FLMIs, and FLMeB) in the

prediction, tended to result in an over-prediction bias indicated by large negative values of the mean

residual. This unfavorable outcome was evident in each of the other indicators. Models involving

mean RIT block growth (MRBG, LMIsSt +MRBG, and LMeBSt+MRBG) resulted in somewhat more

favorable results across indicators for Cohort A in both Reading and Mathematics. In fact the linear

model using empirical Bayes estimates of status with RIT block growth as estimates of rate

(LMeBSt+MRBG) produced the most favorable results in Reading. In Mathematics, however, the

model using local-based z scores (MlbZ and MlbZ*) produced the most favorable set of results even

though results generally under-predicted performance.

For Cohort B, linear models that included the estimation of grade status from a linear model in

combination with RIT block growth means as estimates of rate of growth, LMIsSt+MRBG (for

Reading) and LMeBSt+MRBG (for Mathematics) yielded the most favorable set of indicators. In

terms of percentage of predictions within the I SEM bands established, the norm-based z-score models

(MnbZ and MnbZ*) were both favorable for Reading. In Mathematics, the simple models using only

mean grade level growth (MGLG) and RIT block growth (MRBG) were also quite favorable. In both

cases, however, the correlations between the residual and the last observed RIT score were too high

for these models to be considered across the measurement range.

14
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Cohort C.

Cohort C results are contained in Table 6. The upper part of the table presents residuals based only on

spring data while the lower part presents residuals based on both fall and spring data. For both

Reading and Mathematics, the additional fall data had only minimal effect on bringing the mean

residual closer to zero. For Reading, the inclusion of fall data into the two full linear models (FLMIs

and FLMeB), the actually introduced more bias into the predictions. However, the large over-

prediction levels associated with linear models involving a slope parameter that were noted in the

Cohorts A and B data were not as pronounced in the for Reading and were virtually absent for

Mathematics.

Variance (RMSE) in the residuals of the models using linear estimates (LMIsSlp, LmeBS 1p,

LM1sSt+MRBG, LMeBSt+MRBG, FLMIs, & FLMeB) was, in general, more favorable when both fall

and spring data were used. This was the case for both Reading and Mathematics. Predictions in

Reading using fall and spring and spring only data had the least variance when the full empirical

Bayes linear model (FLMeB) and the linear model using empirical Bayes estimates of end grade status

and RIT block mean growth for the rate estimate (LmeBSt+MRBG). In Mathematics, the linear

model estimating end grade status using ordinary least squares and RIT Block mean for the rate

estimate (LM1sSt+MRBG) and the simple observed end grade status plus mean RIT block growth

(MRBG) resulted in the lowest levels of residual variance.

The linear models using empirical Bayes estimates of end grade status resulted in the most accurate

(i.e., the highest percentage of cases within ±1 SEM) predictions in Reading when fall and spring data

were used. For the spring only data, the full linear model using empirical Bayes estimates (FLMeB)

resulted in the most desirable statistics overall. For the fall and spring data, the model using empirical

Bayes and the model using ordinary least squares estimates of end grade status plus mean RIT block

growth can be seen as the most. It lead to the most accurate predictions overall.

Prediction accuracy in Cohort C mathematics was highest for the simple observed end grade status

plus mean RIT block growth model (MRGB) was found to be the most effective overall, even though

some of its indicator statistics were not optimal. This was the case for both the spring only and the fall

and spring datasets. However, the two linear models that used RIT block growth as the estimate of

rate yielded accuracy percentages that approached that of the MRBG model in the fall and spring

dataset. The norms-based z-score models yielded the least accurate predictions by far, particularly for

the fall and spring dataset.
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Residual plots.

Figures 1 through 4 present selected residual plots for Reading and Mathematics from the previous

four sets of analyses (Cohorts A, B, C spring only, and C fall and spring). Each plot shows the

resulting residuals from the selected model in relation to the final (observed) RIT scores. The plots

selected for presentation were for the most parsimonious model in each set. For contrast and for

illustrative purposes, the least parsimonious models for the same analysis set are presented in the

lower portion of each figure. For purposes here, 'most parsimonious' refers to the model that resulted

in the most favorable combination of low bias, low RMSE, low n:resid RITgi, and high percent of

predictions within ±1 SEM.

The plots require little explanation but would benefit from pointing out a few characteristics of what

we would expect to see in a parsimonious model. These include:

1. A trend line that runs through the range of the plot at or very close to the zero level.

This is illustrated well in the Figure 2, Mathematics, most parsimonious plot.

2. When there is a positive or negative trend in the residuals, the difference between the

most positive and most negative would be contained in a very narrow band. Figure 1,

Reading, most parsimonious illustrates this.

3. Vertical scatter around the zero point would be compact, with the vast majority of

residuals falling inside a narrow range (e.g., ± 10). Figure 2, for Mathematics, most

parsimonious is the best example of this among the data sets.

4. Scatter around the zero point trend line would be vertically symmetrical across the

entire measurement range of the RIT scores. None of the figures represents this

particularly well, but Figure 2 for Mathematics, most parsimonious comes closest. Lack

of symmetry is an indication that the model differentially accurate across the measurement

scale.

Cohort A. The linear model with empirical Bayes estimates of end grade score plus RIT block growth

was chosen as the most parsimonious for Reading. The plot for Reading (Figure 1) shows better

predictions for scores above 200. More serious over-predictions (i.e., residuals < -10) were evident.

For Mathematics, the linear model using ordinary least square estimates of grade status plus RIT block

growth was selected. Again, the most discrepant residuals appeared at about RIT 225 and below..
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Cohort B. Predicting Reading using linear least squares to estimate end grade and RIT block mean to

estimate rate was selected as the most parsimonious model. (see Figure 2) This model resulted in a

very slight bias toward under-prediction. Discrepant over-predictions (< -.10) were distracting but

relatively infrequent. The empirical Bayes version of the same model was selected as the most

parsimonious for Mathematics. Its pattern of residuals was fairly symmetric around zero and

generally clustered within the 10 to +10 RIT range.

Cohort C, spring only data. The full linear model using empirical Bayes estimates was selected as the

most parsimonious model for the Reading predictions. Even though this model resulted in a slight

over-prediction bias (mean residual = -.31), its more severe under-predictions (residuals >10) were

more common across the entire measurement range. This was similar to the most parsimonious model

selected for Mathematics, the simple observed end grade plus RIT block growth model. Its more

severe under-predictions occurred for scores in the 185-265 RIT range while its more severe over-

predictions occurred in the 200-280 RIT range.

Cohort C, fall and spring data. The most parsimonious model for Reading was considered to be the

linear model using ordinary least squares estimates for end grade status plus RIT block growth for a

rate of growth estimate. The vast majority of its predictions fell within a 20 point band around zero.

However, the severe over-predictions occurred for RIT scores in the 175-245 while the severe under-

predictions were in the 190-255 RIT range of last observed scores. The model selected as the most

parsimonious for Mathematics was the same as the one selected for the Cohort C, spring only data set.

The comments made there apply to the fall and spring data set.
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Discussion

This study was undertaken to evaluate models that could be used to set single-year individual student

academic growth targets. Multiple terms of individual student reading and mathematics test results

were analyzed to predict each student's final status score in each subject. Test records from over 5300

students in three cohorts were used; two cohorts of roughly 670 to 750 students and one cohort of

roughly 4000 students. The two smaller cohorts were from the same school district; the larger one was

from the 2002 NWEA Norming Study and represented nine school districts. Three terms of spring

data were used to predict scores in a fourth spring term for the two smaller cohorts. For the larger

cohort, four terms of fall data and four terms of spring data were used to predict scores in a fifth spring

term. Also, the four terms of spring data were used independently to predict scores in the fifth spring

term.

The twelve models used to make predictions varied in the: a) treatment of data prior to the last

`observed' score, b) nature of the last score [observed or estimated], and c) estimate of rate of growth

used [linear, RIT block growth, ignored in the z-score models]. Of the 12 models applied to each of

the eight data sets, five emerged as yielding the most parsimonious set of predictions. The predictions

within ±1 SEM of the observed scores ranged from roughly 40 to 50 percent for these models.

Corresponding percentages for the six least parsimonious models ranged from roughly 11 to 37

percent.

The prediction task here was intentionally restricted to using only available achievement test data.

Were a traditional modeling or forecasting approach taken, additional data such as school or district

characteristics (e.g., class size, curricular differences), or student characteristics (e.g., gender,

ethnicity, level of poverty, English language status) could have been added to help model additional

variance. For example, recalling that Cohort C was made of data from nine school districts, it is quite

possible that a good portion of the variability in the Mathematics data could have been attributable to

differences in mathematics course taking patterns between these districts. Taking such differences

into account, may have improved prediction accuracy. However, even though they may improve

prediction accuracy, these variables would typically not be feasible to include. In all likelihood they

would be viewed as setting differential growth targets (expectations) based on school and/or student

characteristics; current collective thought cannot reconcile this practice with the demands of the

standards movement.

In what might be considered a prophetic announcement of the results of this study, George E.P. Box

(as cited in Sloane & Gorard, 2003), once opined, "All models are wrong, but some are useful." Even
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though the term 'parsimonious' has been used here to label particularly attractive sets of results for a

model, the term could only be applied as a relative one. When the most parsimonious model

accurately predicted (within I SEM) student status slightly less than 50 percent of the time, we can

safely conclude that all these models are wrong, at least they are less accurate than we would like.

However, this does not preclude the possibility that some of the models or model components may

prove useful under specific conditions. What proves useful, may well depend on the characteristics of

the data available to model. If a grade-independent scale can be assumed, the important characteristics

for the models used here reduce to the quantity of data, the number of waves of data with common

student test results, and variability in those data.

A district that has only one or two waves of same-student data, could in the absence of stable growth

norms, assign individual growth targets based on the grade level differences in status norms. This is

consistent with current standards-based accountability systems; all students in a grade would be

assigned the same growth targets. Considering the potential disruption this could cause, it is not a

recommended approach. A more promising approach would be to gather one or two additional waves

of data and then investigate one of the two local-based mean z-score models used with Cohort A.

These models should work well when the number of students per grade level is about 500 or more and

the score distributions are approximately normal. When grade level growth norms are available, these

could be used immediately, though for individual student growth targets they are only a slight

improvement over using grade level differences in status norms. At the individual student level,

growth norms that are segmented based on initial score (e.g., RIT block mean growth), will typically

result in more reasonable growth targets.

When three or four waves of achievement data are available for making predictions, the range of

options increases. Linear models that provide an estimate of the last (observed) score combined with a

mean from segmented growth norms as a substitute for growth rate should be considered. Results

from this study demonstrated that with short time series (e.g., 3 waves) the slope estimates of the

linear models had low-moderate reliability (viz., .36 and .087 for Reading and Mathematics,

respectively in Cohort A; and .12 and .31 for Reading and Mathematics, respectively in Cohort B).

Use of the RIT block means in place of the rate estimates from the linear models, improved accuracy

over the full linear models. In addition to the more complex models, the local-based mean z-score

model could be explored when the conditions noted previously hold.

With four or more waves of data, consideration can be given to the full linear models. However, the

results here demonstrate that more waves of data don't always yield the least biased or most accurate

predictions, even though they are likely to be among the most accurate. A pattern of inconsistent term
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level variances for a cohort can be considered a sign that linear models, or at least the linear models

used here, may not lead to the most accurate results (see Cohort C).

Explicitly including individual growth into a district or state level accountability system has the

potential to expand the capability of the system by making it more comprehensive and more sensitive

to the full range of academic change. To realize this potential, the expectations for academic change

need to be generated from the perspective of the individual student. Research in this area is still

immature and more research is clearly needed. However, even at this stage there is sufficient evidence

to counter the unfortunate practice of declaring group growth targets in the absence of reasonable

expectations for individual student growth a practice that has been encouraged by status oriented

accountability systems.
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